Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol Heart Vasc ; 52: 101397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584673

RESUMO

Background: Recent studies investigating the effects of fish oil on shocks administered by ICDs in patients with ventricular tachycardias produced inconclusive results. This systematic review aims to evaluate the effectiveness of omega-3 polyunsaturated fatty acids in lowering the risk of life-threatening VTs among individuals with implantable cardioverter-defibrillators. Methods: We searched five databases, including Central, PubMed, EMBASE, Web of Science, and Scopus, for studies evaluating the efficacy of omega-3 polyunsaturated fatty acids (PUFAs) for the prevention of ICD events for VT or VF, published up to December 1, 2023. Results: Four trials were finally included in the study. The pooled risk ratios for mortality and ICD events were 0.87 (95% CI:0.58-1.32) and 0.75 (95% CI:0.48-1.18), respectively. Conclusion: No significant effect was discovered to support the antiarrhythmic properties or survival advantages of n-3 polyunsaturated fatty acids (PUFA) in individuals with implanted implantable cardioverter-defibrillators (ICD).

2.
J Membr Biol ; 257(1-2): 3-16, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356054

RESUMO

Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-ß (TGF-ß), and WNT/ß-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/ß-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.


Assuntos
Aldeído Desidrogenase , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Receptor ErbB-2 , beta Catenina , Humanos , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , beta Catenina/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor ErbB-2/metabolismo
3.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38366952

RESUMO

Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Insulinas/genética , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...